

BENEFITS OF MOVING BED ION EXCHANGE FOR URANIUM HYDROMETALLURGICAL FLOWSHEETS

***** Presented By:

Olga Yahorava and Roger Pimpalkar

Ion Exchange In Uranium Processing

- The ion exchange process applies to the treatment of both pulps and clarified solutions in either an acid or alkaline circuit
- Challenges of ion exchange processes:
 - Solids handling
 - Reagents consumption vs resin
 regeneration efficiency
 - Water balance
 - Some impurities

Yellow Cake

CLEANTEQ

CLEAN-IX® provides a continuous, counter-current approach to ion exchange, thereby optimally exploiting ion exchange resin chemistry to deliver richer metal liquors and an improved water balance around the circuit

U Best Engineering Solution For Each IX Stage

IX Stage	Equipment Options	Benefits / Function	
Adsorption	Moving Bed	Efficiencies & residence time comparable to fixed bed Can handle suspended solids	
	Resin-in-Pulp	True continuous counter-current, up to 50% w/w solids	
Washing	Moving Bed	Efficient recovery of entrained solution, minimized water consumption	
	Trommel/screens	Resin/pulp separation, entrained solution recovery (including reagents)	
	Fluidised Column	Elutriation - solids removal, entrained solution removal	
Elution/ desorption	Moving Bed	Minimal value metal dilution, no holding tanks and internal recycles	
	U-column	Rejection of some impurities and metal upgrade into eluate	
	Pachuca	Can accommodate formation of solids or gases during regeneration process	

J Ion Exchange Flowsheet for Uranium Recovery From Clarified Solutions

Counter-current Approach: Adsorption

Operates like a packed-bed system BUT:

- Resin moves periodically (column can be "divided" into 10⁺ sections in "lead-lagpolish-...-polish" configuration)
- Full resin capacity utilisation

• Due to periodical resin movement:

- Can tolerate suspended solids
- Risk of column blockages is minimized

Benefits for uranium adsorption

Metal concentration @ transfer mg/L					
Column	Liquor avg.	Resin			
Lead	69	(8.4)			
Lag	20	6.0			
Polish	(0.5)	2.1			

NEAR-COMPLETE +7% RECOVERY LOADING

Metal concentration @ transfer mg/L					
Sub-sections	Liquor avg.	Resin			
1	98	(9.0)			
2	95	9.0			
3	86	8.9			
10	26	6.7			
11	18	6.1			
12	11	5.4			
13	5_	4.0			
18	0.04	1.8			
19	0	1.0			
20	0	0.3			

Fixed Bed: ~3+ stages for recovery (lead-lag polish)

Fixed Bed

Moving Bed:

- More "stages" possible
- Maximises resin metal loading
- Maximises recovery
- Decreases resin inventory for a given extraction/removal extent

- Nitrate > chloride > sulphuric acid or bicarbonate
- Resin must be converted back to the sulfate (or carbonate) form before going back to adsorption
- Some impurities (Fe, Th, V, and others) can interfere with downstream processing, impact the purity of the yellow cake

- Fixed bed systems typically have a single elution vessel (but may use some solution cycling)
- Carousel/multiple vessels approach resembles desorption in moving bed straight column
- Moving bed CNQ column:
 - Results in more concentrated product liquor (eluate);
 - More efficient reagent utilisation
 - Minimises value metal dilution into the product stream

Distribution of the element during desorption/ mass transfer zone (MTZ) formation

(a) – concentration profile inside of the desorption column; (b) – elution curve 1 – adsorption profile of eluting reagent; 2 – desorption curve of metal

Straight Moving Bed Transition To Usshaped Column

Straight Column

Eluant-to-Resin volumetric flow ratio reduced

When...

- Eluate is transported to the refinery;
- The size of downstream processing circuits must be minimised;
- Scrubbing of co-loaded impurity metals is desirable

U-Column

U-column currently operating outside Austral

Compressed Air

NO₃, 1 g/L U, pH 1.3

~0.42 BV, ~72 g/L U

Eluate Outlet

Barren Resin Outlet (<2 g/L U)

3 times dilution with process water, 3.0 BV/BV

Examples of the U-Column Performance

Lixiviant	Sulphuric acid			Na ₂ CO ₃ /NaHCO ₃
Uranium in feed, g/L	0.08	0.9	0.4	0.6
Uranium on resin to elution, g/L	30	43.8	32	18
Uranium on resin out of elution, g/L	2	0.5	1	1.5
Eluant	NH ₄ NO ₃	NaCl	H ₂ SO ₄	NaHCO ₃
Product flow, m ³ /m ³	0.41	1.5	1.72	2.5
Uranium in IX product stream, g/L	72	28	18	6.6
Impurities rejected	n/a	Fe ³⁺	Fe ^{3+,} Th ⁴⁺	HVO4 ²⁻
In column dilution or neutralisation	✓	×	×	~

Sulphuric acid elution circuit				
Element	Metal concentrations, mg/L		Uranium-to-Impurity Ratio	
	Resin	U-column product	Resin	Eluate
Fe	1000-1300	0.2	23-26	109000
P (phosphates)	230	71	135-146	307
Si	~6000	28.4	5.6	905
Th	<500	4	<61	5450
U ₃ O ₈	~34 000	25708	-	-
Zr	<10	6.4	<3000	4017
Chlorides	~2000	1390	15	18
Nitrates as NO ₃	n/a	615	n/a	42

Benefits of iron rejection from the product:

- No organic freeze if Solvent Extraction is considered downstream
- Minimised scaling issues if NF is considered
- Minimum or no requirement for iron removal circuit before yellow cake precipitation

Comparison of fixed bed multi-column vs CI

- Better resin capacity utilisation
- Better resin elution efficiency
- Smaller and purer uranium-containing liquor

flow for downstream processing

- More efficient reagents utilisation
- Improved water balance

Daramatar	Unit	Fixed	CIX
Parameter		bed	
Processing flowrate	m³/hr	655	655
U_3O_8 in feed	g/m³	250	250
U ₃ O ₈ in barren	g/m ³	5.0	5
U_3O_8 in resin loaded	kg/m³	28	34
U ₃ O ₈ in resin eluted	kg/m ³	2.0	0.5
Resin flowrate	m³/hr	6.7	4.9
Uranium delta	kg/m ³	24.0	33.1
Resin flow	m³/hr	6.2	4.85
NaCl in eluate	g/L	82	82
H_2SO_4 in eluate	g/L	23	50
Eluate to downstream	m ³ /m ³	3	1.5
U_3O_8 in the product	g/L	8.0	22.1
NaCl/U ₃ O ₈	kg/lbs	4	2
H_2SO_4/U_3O_8	kg/lbs	1.2	1.03
Eluate flow to downstream	m³/hr	18.54	7.28

- Organization of uranium processing in a continuous counter-current manner provides several benefits in comparison to simulated moving bed or fixed bed approaches like better water balance, more efficient reagents utilisation, higher tolerance to the solids, etc
- Elution in U-column benefits uranium processing in several ways:
- Concentrates uranium to the smaller and purer stream
 - Small, concentrated stream decreases the size of downstream circuits (CAPEX)
 - Improved water balance (OPEX)

- Improved separation efficiency between uranium and impurities
 - Minimises value metal loss (REVENUE)
 - Minimises uranium recycling upstream (CAPEX, OPEX)
 - Reduces or avoids the impact of impurities on downstream processing

(operability, OPEX)

- Reduced reagent demand within the ion exchange circuit (OPEX)
- A U-column can be integrated with various moving bed IX configurations (e.g. CIX, NIMCIX, Resin-in-Pulp)

U Clean TeQ General Capabilities

Clean TeQ Water Operations Limited

12/21, Howleys Road, Notting Hill, VIC 3168

AUSTRALIA

() www.cleanteqwater.com

Roger Pimpalkar Commercial Manager M: -

rpimpalkar@cleanteqwater.com

Olga Yahorava Principal Scientist/Ion Exchange M: oyahorava@cleanteqwater.com